405 research outputs found

    Adsorption characterization for multi-component organic matters by titanium oxide (TiO<inf>2</inf>) in wastewater

    Full text link
    In this study, an experimental and analytical study on adsorption and adsorption kinetics of organic matters in titanium oxide (TiO2, Degussa P25) with synthetic wastewater was investigated. In order to understand the removal of different organic sizes in detail molecular weight (MW) distribution of organics matters was examined in terms of number and weight-average MW. The large MW (33950 dalton) of synthetic organic matters (SOMs) was significantly removed by TiO2 adsorption and the slight decrease of the small MW (970 dalton) occurred with time. A characterization method was applied to evaluate the composition of SOMs in terms of adsorbability by adsorption of TiO2. Several adsorption equilibrium and batch kinetics experiments were conducted with different initial concentrations of SOMs and different amounts of adsorbent. A binomial distribution(s) of SOM fraction with the Freundlich coefficient (k) was obtained. The synthetic wastewater was explained by a finite number of pseudospecies (N) identified with a Freundlich isotherm constant (k) value. These parameters were determined by the characterization procedure, together with ideal adsorbed solution theory (IAST) with the pseudospecies number method. Prediction of adsorption isotherm and kinetics derived from a binomial concentration distribution of the characterization procedure were in good agreement with experimental data conducted

    Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment

    Full text link
    Wastewater reuse is being increasingly emphasized as a strategy for conservation of limited resources of freshwater and as a mean of safeguarding the aquatic environment due to contaminants present in wastewater. Although secondary and tertiary treated wastewater is often discharged into surface waters, it cannot be reused without further treatment. One of the parameters of concern for human and environmental health is components of organic matter originating from wastewater treatment plant (WWTP) effluents. This effluent organic matter (EfOM) should be carefully characterized in order to find an optimum treatment method for water reuse. This review presents the components of EfOM present in WWTP effluents and various treatment methods that may be employed for reduction of EfOM. These processes include flocculation, adsorption, biofiltration, ion exchange, advanced oxidation process, and membrane technology. The removal efficiency is discussed in terms of removal of total organic carbon, endocrine-disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs), different polarity fractions (such as hydrophobic and hydrophilic), and molecular weight distribution of organic matter. Copyright © Taylor & Francis Group, LLC

    Development of a new poly silicate ferric coagulant and its application to coagulation-membrane filtration hybrid system in wastewater treatment

    Full text link
    Coagulation is one of the effective pretreatment stages in membrane filtration of wastewaters to produce clean water. Using a suitable coagulant, one can mitigate membrane fouling. Membrane fouling is a process where particles deposit onto a membrane surface or into membrane pores in a way that degrades the membrane's performance. Research in this area is currently being focused on development of improved coagulation reagents such as poly silicate ferric (PSiFe), which has a high molecular weight and large number of positive surface charges with high efficiency at low doses. In this paper, PSiFe was prepared by following two approaches: (a) acidification of water glass solution using HCl followed by FeCl3 addition (old-PSiFe); (b) acidification of water glass solution by passing it through an acidic ion exchange resin followed by fresh FeCl3 addition under different Fe/Si molar ratios (new-PSiFe). These coagulants were characterised by X-ray diffraction and scanning electron microscopy. According to coagulation jar test results when Fe/Si = 1, the best performance was achieved in terms of turbidity, total organic carbon (TOC) and UV254 removals. Another aspect is the comparison of the old-PSiFe, FeCl3 and new-PSiFe which showed that in a membrane filtration system, using the new-PSiFe not only reduces the required transmembrane pressure (TMP) due to lower fouling, but also improves the TOC removal efficiency. © 2013 © 2013 Balaban Desalination Publications. All rights reserved

    Characterisation of titanium tetrachloride and titanium sulfate flocculation in wastewater treatment

    Full text link
    Flocculation with titanium tetrachloride (TiCl4) and titanium sulfate (Ti(SO4)2) was investigated in terms of different coagulant doses, pH, turbidity, dissolved organic carbon (DOC), UV-254, colour, zeta potential, particle size and molecular weight distribution. The two coagulants were compared with the commonly used coagulants such as ferric chloride (FeCl3) and aluminium sulfate (Al2(SO 4)3). Titanium tetrachloride showed the highest turbidity removal, while titanium sulfate showed the highest reduction of UV-254 and colour at all pH values. The four coagulants were found to have similar organic removal up to 60-67% and resulted in similar organic removal in terms of various MW ranges. The decantability of the settled flocs was very high for titanium tetrachloride, titanium sulfate and ferric chloride compared with aluminium sulfate. The dominating coagulation mechanisms for titanium tetrachloride and titanium sulfate are still to be studied, since different precipitation reactions might take place at different pH even without flocculant addition. Titanium tetrachloride and titanium sulfate were found as effective new coagulants in wastewater treatment not only in terms of organic matter removal, but also in sludge reduction through the production of titanium dioxide. © IWA Publishing 2009

    Fouling and inactivation of titanium dioxide-based photocatalytic systems

    Full text link
    Copyright © 2015 Taylor & Francis Group, LLC. Titanium dioxide is an effective photocatalyst for the breakdown of many environmental contaminants. The complex mixtures that can occur in water matrices can significantly affect the breakdown of the contaminants in water by titanium dioxide (TiO2). The authors discuss a wide variety of foulants and inhibitors of photocatalytic TiO2 systems and review different methods that can be effective for their fouling prevention. Approaches to regenerate a fouled or contaminated TiO2 catalysts are explored and the effect of substrates on immobilized titanium dioxide is also reviewed

    Performance comparison of thin-film composite forward osmosis membranes

    Full text link
    Forward osmosis (FO) is an emerging low-energy technology. Much effort was given on developing a new membrane material and engineering membrane structure to improve the performance of FO membranes. The performances of two newly developed polyamide-based thin-film composite (TFC) FO membranes were tested and compared with the commercially available cellulose triacetate (CTA) FO membrane. The intrinsic properties of the two TFC FO membranes determined in RO experiments indicate superior performance of the membranes. When tested in FO experiments, TFC membranes delivered consistent results, confirming their outstanding permeability and selectivity properties. The study shows that future studies on membrane fouling will be necessary to have a better understanding of membrane performance and to further optimize membrane properties. © 2013 Copyright Balaban Desalination Publications

    Ultraflitration of wastewater with pretreatment: evaluation of flux decline models

    Full text link
    Three different mathematical models relating the flux decline were investigated to quantify the effects of pretreatment in a membrane filtration system. The models used are empirical flux decline model, series resistance flux decline model and modified series resistance flux decline model. A cross flow ultrafiltration unit was used to study flux decline and organic removal from synthetic wastewater. Flocculation and adsorption pretreatments were carried out with ferric chloride (FeCl3) and activated carbon of different doses. The three models could predict flux decline after different pretreatments and could be used as a pretreatment index to ultrafiltration. © 2008

    Effect of pre-treatment on fouling propensity of feed as depicted by the modified fouling index (MFI) and cross-flow sampler-modified fouling index (CFS-MFI)

    Full text link
    The effectiveness of different pretreatment on the fouling propensity of the feed was studied using synthetic wastewater. The fouling potential of the feed was characterized by the standard modified fouling index (MFI) and cross-flow sampler modified fouling index (CFS-MFI). In CFS-MFI, a cross-flow sampler was used to simulate the condition of a cross-flow filtration. The results indicated that the pretreatment such as flocculation with an optimum dose of 68 mg/l FeCl3 substantially reduced the fouling propensity of the feed. The standard MFI of flocculated wastewater was reduced by around 99% compared to that of the untreated wastewater. Similarly, the adsorption with powdered activated carbon (PAC) of 1 g/l reduced the standard MFI value to more than 99% compared to that of the untreated wastewater. The CFS-MFI values were lower than the standard MFI values for both treated and untreated wastewater, suggesting that the standard MFI was overestimated. The overestimation of the standard MFI compared to that of the CFS-MFI value was more than 99%. The effect of molecular weight distribution (MWD) of the foulants in the wastewater on the fouling propensity of the feed was investigated. The MWD was correlated with the MFI and CFS-MFI indices. It yielded useful insights in understanding the effect of MW on MFI and CFS-MFI and fouling propensity of the feed. © 2009 Elsevier B.V. All rights reserved

    Adsorption and photocatalysis kinetics of herbicide onto titanium oxide and powdered activated carbon

    Full text link
    The adsorption and photocatalysis kinetics of metsulfuron-methyl (MM) onto titanium oxide (TiO2) and powdered activated carbon (PAC) were studied at varying adsorbent amount and MM concentration. The overall mass transfer in adsorption was estimated from concentration decay curves obtained in the batch adsorber. The maximum adsorption capacity decreased with increasing adsorbent amount in TiO2 adsorption. The adsorption isotherms of MM could be plotted using the Langmuir isotherm model with a reasonable degree of accuracy having higher r2 values rather than Freundlich isotherm model. Linear driving force approximation (LDFA) kinetic equation with Langmuir adsorption isotherm model was successfully applied to predict the adsorption kinetics data in various concentrations of MM in photobatch reactor. The estimated mass transfer coefficient was used to be 3.0 × 10-5, 5.5 × 10-5, 9.1 × 10-5 m/s in PAC adsorption and 2.0 × 10-5, 1.1 × 10-5, 9.0 × 10-6 m/s in TiO2 adsorption for a different MM concentration of 20, 50 and 70 mg/L, respectively. Photocatalysis kinetics was same with TiO2 of 0.2 g/L regardless of TiO2 amounts and the MM degradation kinetics was enhanced by TiO2 catalysis rather than only UV light degradation. Among the photocatalysis kinetics model with first-order, second-order and Langmuir-Hinshelwood (L-H) model, a second-order kinetic model was found to well present the experimental data of MM by TiO2 catalyst for the range of various TiO2 amounts and MM concentration studied. © 2007 Elsevier B.V. All rights reserved

    Chemical-assisted physico-biological water mining system

    Full text link
    Water mining is the process of extracting valuable water from a sewerage network by treating raw sewage to high standards. A range of commercially viable water mining treatment technologies are now available to treat sewage to specified water quality targets. Most of these technologies have minimal plant footprint requirements, making them suitable for decentralised operations. This paper discusses a hybrid water mining system that includes chemically assisted fine solids separation followed by a biological treatment process. Results from the first proof testing of this water mining system in Sydney, Australia are presented. The results confirm the suitability of the hybrid system for producing high-quality water for non-potable reuse
    • …
    corecore